1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
   | 
  from langchain_chroma import Chroma from langchain_community.document_loaders import WebBaseLoader from langchain_core.chat_history import BaseChatMessageHistory from langchain_core.prompts import ChatPromptTemplate from langchain_core.prompts import MessagesPlaceholder from langchain_openai import ChatOpenAI from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_core.messages import AIMessage, HumanMessage from langchain.globals import set_debug from langchain_core.runnables.history import RunnableWithMessageHistory from langchain_community.chat_message_histories import ChatMessageHistory from langchain.chains.combine_documents import create_stuff_documents_chain from langchain.chains import create_history_aware_retriever from langchain.chains import create_retrieval_chain
 
  set_debug(False)
 
  loader = WebBaseLoader(     web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),     bs_kwargs=dict(         parse_only=bs4.SoupStrainer(             class_=("post-content", "post-title", "post-header")         )     ), )
  docs = loader.load()
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
  splits = text_splitter.split_documents(docs)
  vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
  retriever = vectorstore.as_retriever()
 
  system_prompt = ("您是一个用于问答任务的助手。""使用以下检索到的上下文片段来回答问题。""如果您不知道答案,请说您不知道。""最多使用三句话,保持回答简洁。""\n\n""{context}" )
  prompt = ChatPromptTemplate.from_messages(     [         ("system", system_prompt),         ("human", "{input}"),     ] )
 
  qa_prompt = ChatPromptTemplate.from_messages(     [         ("system", system_prompt),         MessagesPlaceholder("chat_history"),         ("human", "{input}"),     ] )
 
  llm = ChatOpenAI()
  question_answer_chain = create_stuff_documents_chain(llm, prompt)
  rag_chain = create_retrieval_chain(retriever, question_answer_chain)
 
  contextualize_q_system_prompt = ("给定聊天历史和最新的用户问题,""该问题可能引用聊天历史中的上下文,""重新构造一个可以在没有聊天历史的情况下理解的独立问题。""如果需要,不要回答问题,只需重新构造问题并返回。" )
  contextualize_q_prompt = ChatPromptTemplate.from_messages(     [         ("system", contextualize_q_system_prompt),         MessagesPlaceholder("chat_history"),         ("human", "{input}"),     ] )
  history_aware_retriever = create_history_aware_retriever(     llm, retriever, contextualize_q_prompt )
 
  question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
  rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
 
  store = {}
 
          store[session_id] = ChatMessageHistory()return store[session_id]
 
  conversational_rag_chain = RunnableWithMessageHistory(     rag_chain,     get_session_history,     input_messages_key="input",     history_messages_key="chat_history",     output_messages_key="answer", )
 
  |