1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
| pip install langchain pip install uuid pip install pydantic
import json import sys from typing import List, Optional, Dict, Any, Tuple, Union from uuid import UUID
from langchain.memory import ConversationTokenBufferMemory from langchain.tools.render import render_text_description from langchain_core.callbacks import BaseCallbackHandler from langchain_core.language_models import BaseChatModel from langchain_core.output_parsers import PydanticOutputParser, StrOutputParser from langchain_core.outputs import GenerationChunk, ChatGenerationChunk, LLMResult from langchain_core.prompts import PromptTemplate from langchain_core.tools import StructuredTool from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field, ValidationError
from typing import List
from langchain_core.tools import StructuredTool
def search_train_ticket( origin: str, destination: str, date: str, departure_time_start: str, departure_time_end: str ) -> List[dict[str, str]]: """按指定条件查询火车票"""
return [ { "train_number": "G1234", "origin": "北京", "destination": "上海", "departure_time": "2024-06-01 8:00", "arrival_time": "2024-06-01 12:00", "price": "100.00", "seat_type": "商务座", }, { "train_number": "G5678", "origin": "北京", "destination": "上海", "departure_time": "2024-06-01 18:30", "arrival_time": "2024-06-01 22:30", "price": "100.00", "seat_type": "商务座", }, { "train_number": "G9012", "origin": "北京", "destination": "上海", "departure_time": "2024-06-01 19:00", "arrival_time": "2024-06-01 23:00", "price": "100.00", "seat_type": "商务座", } ]
def purchase_train_ticket( train_number: str, ) -> dict: """购买火车票""" return { "result": "success", "message": "购买成功", "data": { "train_number": "G1234", "seat_type": "商务座", "seat_number": "7-17A" } }
search_train_ticket_tool = StructuredTool.from_function( func=search_train_ticket, name="查询火车票", description="查询指定日期可用的火车票。", )
purchase_train_ticket_tool = StructuredTool.from_function( func=purchase_train_ticket, name="购买火车票", description="购买火车票。会返回购买结果(result), 和座位号(seat_number)", )
finish_placeholder = StructuredTool.from_function( func=lambda: None, name="FINISH", description="用于表示任务完成的占位符工具" )
tools = [search_train_ticket_tool, purchase_train_ticket_tool, finish_placeholder]
prompt_text = """ 你是强大的AI火车票助手,可以使用工具与指令查询并购买火车票
你的任务是: {task_description}
你可以使用以下工具或指令,它们又称为动作或actions: {tools}
当前的任务执行记录: {memory}
按照以下格式输出:
任务:你收到的需要执行的任务 思考: 观察你的任务和执行记录,并思考你下一步应该采取的行动 然后,根据以下格式说明,输出你选择执行的动作/工具: {format_instructions} """
final_prompt = """ 你的任务是: {task_description}
以下是你的思考过程和使用工具与外部资源交互的结果。 {memory}
你已经完成任务。 现在请根据上述结果简要总结出你的最终答案。 直接给出答案。不用再解释或分析你的思考过程。 """
class Action(BaseModel): """结构化定义工具的属性""" name: str = Field(description="工具或指令名称") args: Optional[Dict[str, Any]] = Field(description="工具或指令参数,由参数名称和参数值组成")
class MyPrintHandler(BaseCallbackHandler): """自定义LLM CallbackHandler,用于打印大模型返回的思考过程""" def __init__(self): BaseCallbackHandler.__init__(self)
def on_llm_new_token( self, token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: end = "" content = token + end sys.stdout.write(content) sys.stdout.flush() return token
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> Any: end = "" content = "\n" + end sys.stdout.write(content) sys.stdout.flush() return response
class MyAgent: def __init__( self, llm: BaseChatModel = ChatOpenAI( model="gpt-4-turbo", temperature=0, model_kwargs={ "seed": 42 }, ), tools=None, prompt: str = "", final_prompt: str = "", max_thought_steps: Optional[int] = 10, ): if tools is None: tools = [] self.llm = llm self.tools = tools self.final_prompt = PromptTemplate.from_template(final_prompt) self.max_thought_steps = max_thought_steps self.output_parser = PydanticOutputParser(pydantic_object=Action) self.prompt = self.__init_prompt(prompt) self.llm_chain = self.prompt | self.llm | StrOutputParser() self.verbose_printer = MyPrintHandler()
def __init_prompt(self, prompt): return PromptTemplate.from_template(prompt).partial( tools=render_text_description(self.tools), format_instructions=self.__chinese_friendly( self.output_parser.get_format_instructions(), ) )
def run(self, task_description): """Agent主流程""" thought_step_count = 0
agent_memory = ConversationTokenBufferMemory( llm=self.llm, max_token_limit=4000, ) agent_memory.save_context( {"input": "\ninit"}, {"output": "\n开始"} )
while thought_step_count < self.max_thought_steps: print(f">>>>Round: {thought_step_count}<<<<") action, response = self.__step( task_description=task_description, memory=agent_memory )
if action.name == "FINISH": break
observation = self.__exec_action(action) print(f"----\nObservation:\n{observation}")
self.__update_memory(agent_memory, response, observation)
thought_step_count += 1
if thought_step_count >= self.max_thought_steps: reply = "抱歉,我没能完成您的任务。" else: final_chain = self.final_prompt | self.llm | StrOutputParser() reply = final_chain.invoke({ "task_description": task_description, "memory": agent_memory })
return reply
def __step(self, task_description, memory) -> Tuple[Action, str]:
"""执行一步思考""" response = "" for s in self.llm_chain.stream({ "task_description": task_description, "memory": memory }, config={ "callbacks": [ self.verbose_printer ] }): response += s
action = self.output_parser.parse(response) return action, response
def __exec_action(self, action: Action) -> str: observation = "没有找到工具" for tool in self.tools: if tool.name == action.name: try: observation = tool.run(action.args) except ValidationError as e: observation = ( f"Validation Error in args: {str(e)}, args: {action.args}" ) except Exception as e: observation = f"Error: {str(e)}, {type(e).__name__}, args: {action.args}"
return observation
@staticmethod def __update_memory(agent_memory, response, observation): agent_memory.save_context( {"input": response}, {"output": "\n返回结果:\n" + str(observation)} )
@staticmethod def __chinese_friendly(string) -> str: lines = string.split('\n') for i, line in enumerate(lines): if line.startswith('{') and line.endswith('}'): try: lines[i] = json.dumps(json.loads(line), ensure_ascii=False) except: pass return '\n'.join(lines)
if name == "__main__": my_agent = MyAgent( tools=tools, prompt=prompt_text, final_prompt=final_prompt, )
task = "帮我买24年6月1日早上去上海的火车票" reply = my_agent.run(task) print(reply)
|